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Abstract.

Sizing of Hybrid Power Plants (HPPs), which include wind power plants and battery energy systems, is essential to capture

trade offs among various technology mixes. To accurately represent these trade-offs, an Energy Management System (EMS) is

introduced to model the operation of a battery when participating in any market, resulting in realistic operational revenues and

costs. However, traditional EMS models are computationally expensive to solve, a challenge that intensifies when integrating5

these models into sizing processes. This research paper aims to address the critical need for a computationally efficient, accu-

rate, and comprehensive operational model that enables quantitative assessment of HPPs. A novel methodology is introduced

to approximate a state-of-the-art EMS model for HPPs involved in spot market power bidding. This approach utilizes singular

value decomposition for dimension reduction and a feed-forward neural network as a regression. The accuracy of our method-

ology is evaluated showing a root mean square error of 0.09 in predicting hourly operational time series. This method proves10

effective in accurately evaluating the operation of HPPs across various geographical locations and hence on multiple sizing

problems. Furthermore, we utilized the surrogate to evaluate the profitability of several HPPs sizing, achieving a root mean

square error of 0.010 on the profitability index. This shows that the developed surrogate is suitable for HPP sizing for given

cost and financial assumptions.

1 Introduction15

As the renewable energy and storage industry has matured, governmental incentives, that sustained this rapid development,

started to shift. Initially sustained by government-supported feed-in tariffs, wind power plant are transitioning to feed-in pre-

miums or contracts for differences. These support levels are now determined through competitive bidding procedures, Busch

et al. (2023). Additionally, the power plants are also expected to maximize their values from energy markets such as electric-

ity spot market or balancing/reserve markets.This change exposes power plant developers to the dynamics of the wholesale20

electricity market. In this evolving landscape, Battery Energy Storage Systems (BESS) are becoming valuable for wind power

plants to establish robust business cases.
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Despite the absence of a universal definition for Hybrid Power Plants (HPPs) - highlighted by varying interpretations in the

literature Dykes et al. (2020); Long et al. (2022); Paska et al. (2009) - for the purposes of this research, we define renewable-

based HPPs as power plants that combine several technologies, including wind turbines, and possibly energy storage, to pro-25

duce electricity and other energy vectors. They operate from a single geographical location, with all generated power being

transmitted to the electrical grid via a unified point of grid connection.

In the presence of a BESS, HPPs can use strategies such as market arbitrage which involves buying and storing electricity

when market prices are low and selling it when prices are high. Additionally, the integration of energy storage is crucial for

smoothing power supply fluctuations, mitigating power curtailment, enabling HPPs to offer system services and reduce grid30

congestion Das et al. (2019).

As HPPs transition to market-driven revenue models, new possibilities and challenges emerge for power plant developers

and operators. They can strategically navigate energy markets, tailor their operations to demand fluctuations, and capitalize on

price differentials. Consequently, to optimally size an HPP and exploit its potential, it is crucial to consider detailed operational

strategies throughout the power plant’s lifetime. This role is fulfilled by an Energy Management System (EMS). A comprehen-35

sive EMS takes into account the market structure in which the power plant operates, models the various technologies within the

HPP, and aims to maximize profits through market biddings. The importance of a realistic EMS becomes more apparent when

a HPP includes a storage system, as it is necessary to optimize the charge and discharge power of the battery given the available

resources (i.e., wind speed, solar power), the battery’s capacity, available grid connection capacity and degradation cost. Elec-

tricity markets often require power producers to bid in advance for the quantity of electricity they will generate and sell. These40

biddings are based on forecasting of renewable energy generations as well as market prices. However, when the actual gener-

ation deviates from scheduled bids, financial penalties are incurred, accurate forecasting can mitigate these penalties. Hence,

EMS operates to maximize profits, taking into account opportunities in storing and selling electricity, as well as minimizing

imbalance costs due to deviations from the scheduled energy bid. Consequently, numerous studies have approached EMS mod-

eling as an optimization problem. For instance, Das et al. (2020) established a problem formulation for a wind-battery power45

plant based on the day-ahead market, including regulatory periods of the Danish market structure. To account for the uncertain

nature of wind speed and market prices, Crespo-Vazquez et al. (2018) formulated a two-stage convex stochastic programming

framework that incorporates stochastic variables for day-ahead prices, balancing market prices, and power bidding. Several

other studies have contributed to the field, formulating optimization problems under stochastic conditions (Abhinav and Pin-

doriya (2021); Fang and Zhao (2020)) and deterministic scenarios (Huang et al. (2021); Cai et al. (2016)). However, these50

formulations typically assume a given HPP configuration with fixed sizes for wind turbines and battery capacity, optimizing

the system’s operation within these constraints. Optimal sizing of an HPP, on the other hand, requires variations in the sizes

of the wind turbines and battery energy and power, presenting a more complex challenge. Consequently, sizing an HPP based

on any comprehensive and realistic EMS models involves running the EMS optimization for each potential HPP configuration,

resulting in considerable computational demands. Indeed, the combination of generation and storage technologies introduce55

numerous time-dependent variables, complicating the optimization process for sizing an HPP. To illustrate this, we present a
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quantitative analysis of the required computational effort for optimal HPP sizing, based on an EMS developed by Zhu et al.

(2022). This model will be further detailed in Section 2.1.

Table 1 illustrates why HPP sizing optimization often relies on a simplified EMS representation. A complex EMS can extend

the optimization process to thousands of hours, making a simplified EMS a common approach to reduce computational time.60

Although this approach may sacrifice some accuracy in predicted operational revenues, it is a common thread in numerous

review studies (Roy et al. (2022), Lian et al. (2019), Thirunavukkarasu et al. (2023)) that examine HPP sizing methodologies.

These studies reveal a predominant preference for simplified operational strategies in the sizing process. The methodologies

are typically divided into deterministic and stochastic mathematical-based approaches, such as linear or dynamic programming

models, which are well-suited for handling differentiable and continuous objective functions. While gradient-based numerical65

optimization has the advantage of guaranteeing local optimality, their applicability is limited to a subset of objective functions

that are continuous and convex.

To evaluate the value of HPP, the Levelized Cost of Energy (LCoE) is traditionally used. However, to assess the various

potential revenue streams, metrics such as Net Present Value (NPV) Dykes et al. (2020) or the NPV over CAPEX (Capital

Expenditure), are more relevant. This is because storage inherently increases costs and thus the LCoE, even though it has the70

potential to substantially increase revenue or profit.

Table 1. Computational Effort for Optimal Sizing of an HPP using a complex EMS from Zhu et al. (2022)

Time required for one sizing loop (sec) 10

Iteration required to find refined solution 1,000

Time required to compute EMS output per HPP configuration (sec) 2,820

Total time to find the refined configuration (sec) 28,200,000

Time in hours 7,833

To overcome the computational challenges associated with implementing a realistic EMS for HPP sizing while maintaining

high accuracy, a promising approach involves the use of data-driven surrogate-based optimization a technique that has shown

promise in addressing computationally intensive problems in other domains. For instance, Zhang et al. (2021) trained a deep

reinforcement learning algorithm to derive the optimal control policy for the operation of a small-scale wind-solar-diesel-75

battery-reverse osmosis energy system. In a similar approach, Lin et al. (2023) developed a Kriging-based surrogate model

to substitute the computationally expensive objective functions. Consequently, the combined economic and emission dispatch

problem in large-scale power systems was efficiently solved with suitable accuracy. Furthermore, Pang et al. (2023) employed a

neural network surrogate model to replace the original fuel cost functions, reducing the execution time. This neural network was

integrated with a data-driven bat algorithm that efficiently addressed the economic dispatch problem within a comparatively80

shorter timeframe than other tested approaches. Despite the advancements in surrogate modeling for various applications,

there remains a gap for surrogate models tailored to EMS for utility-scale HPPs incorporating detailed operational strategies
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for market participation. This gap exists not only due to the lack of existing applications of surrogate models for EMS in

HPPs but also because of the complexity involved in designing an accurate surrogate model based on a multitude of input and

output time series. Utility-scale HPPs require precise and reliable predictions to optimize performance and profitability, and85

the variability in market conditions and operational constraints further complicates the creation of effective surrogate models.

Additionally, the surrogate model needs to be integrated within a sizing evaluation framework.

This article seeks to address the critical need for a computationally efficient, accurate, and comprehensive operational model

that enables quantitative assessment of HPPs. For that, four surrogate models are used to approximate the outputs of the high-

fidelity EMS. Two of which use a multivariate linear regression to establish a baseline and two others are based on Neural90

networks (NNs). Thanks to the variety of the NN’s activation functions, the inherent non-linear behavior of the high-fidelity

EMS can be approximated. This paper builds on top the EMS model developed by Zhu et al. (2022), which will be detailed in

the following section.

The major contributions of this article are:

– Development of a fast and precise surrogate for a utility-scale HPP EMS model participating in the spot market. The95

surrogate is based on a Feed-Forward Neural Network (FNN), harnessing the power of machine learning to provide a

reliable and efficient alternative to the computationally intensive EMS model.

– Assessment of the surrogate’s ability to predict hourly operational time series on multiple sites across the same electricity

market region.

– Integration of the developed surrogate within a framework to evaluate the profitability of an HPP sizing with high100

accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the EMS model that the surrogate is based on, the

methodology devised for the surrogate modeling of the EMS, and the sizing evaluation framework for analyzing the profitability

of an HPP. Section 4 provides details on the data used to train and validate the surrogate as well as the cost model for the sizing

evaluation framework. While Section 5 provides an in-depth analysis of the surrogate’s accuracy and its application. These105

results are put into perspective in Section 6 and summarized in Section 7.

2 Methodology

In this section, we will start by presenting the high-fidelity model that serves as the foundation for the surrogate models, Section

2.1, followed by the methodology for developing the surrogate model in Section 2.2.

2.1 HPP Operation Model (EMS)110

The EMS model, on which the surrogate is built, is presented in this section. The EMS model is based on a study by Zhu et al.

(2022) that focused on a co-located wind-battery HPP. This novel EMS model, was formulated to optimize market participation

4

https://doi.org/10.5194/wes-2024-96
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



within two sequential electricity markets: namely, the spot market (SM) and the Balancing Market (BM), which encompasses

the regulatory periods of the Danish market structure. This state of the art EMS has the advantage of considering:

– Long-term operation of the HPP with comprehensive revenue streams calculations.115

– Grid capacity, as a practical constraint for the HPP.

– Possibility of considering overplanting, which has been shown to increase the value of HPP.

In electricity trading, various markets enable power plant operators to sell their energy. The SM is currently the most lucrative

market where power is traded for immediate delivery. In the SM, power plant operators can bid on the day-ahead and hour-

ahead markets. Day-ahead bidding determines hourly prices for the next day, while hour-ahead biddings allows for adjustments120

based on updated generation forecasts and cleared SM prices. The BM, another potential source of revenues for HPPs, operates

in conjunction with the Spot Market (SM). The BM enables transmission system operators to adjust for discrepancies between

forecasted and actual demand and supply. These discrepancies arise from the predicted electricity supply that were forecasted

during the SM bidding process and the actual conditions closer to the delivery time. Hence, the BM acts in near real-time,

penalizing deviations from scheduled generation. This paper primarily focuses on the EMS’s role in Day-Ahead (DA) SM125

participation. Additionally, our study considers the Danish market structure with a dispatch interval of 15 minutes. As in real

power plants, the EMS communicates with a Power Management System (PMS). In this framework, the EMS provides energy

set-points, based on weather and market forecast data to the PMS, which, in turn uses Real-Time (RT) measurement data to

derive RT power values. RT measurements allow the calculation of deviations and the applications of penalties. The PMS is

emulated as an active power control logic, as described in Long et al. (2022). The inputs to the EMS are time series forecasts of130

wind power and market prices, while the PMS use the same input time series updated to RT measurements, for each dispatch

interval, as well as the bidding schedule generated from the EMS. For clarity, inputs and outputs of the EMS and PMS are

listed in Table 2.

Table 2. Inputs and Outputs of EMS and PMS from Zhu et al. (2022). RT stands for Real-Time.

Model Inputs Outputs

EMS

HPP configuration HPP power output schedule

Wind power forecast Battery charge/discharge power

SM price forecast Battery state of charge

PMS

Same as EMS, and RT HPP power output

RT wind power RT battery charge/discharge power

Cleared SM prices RT battery state of charge

EMS power output schedule RT curtailed power

While the EMS’s inputs and output time series are based on hourly time steps, the PMS’s outputs and RT input time series

have a time step equal to the dispatch interval i.e., 5 min for the the Danish market structure. Additionally, both models135
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assume a given HPP configuration, also denoted as sizing parameters in this article. They are defined as the wind power plant

rated power, the rated battery power rating, battery energy capacity rating, and grid connection power capacity. Other battery

parameters such as the charge/discharge efficiency are assumed from Zhu et al. (2022).

Figure 1 illustrates the considered EMS workflow.

EMS
Spot Market optimization

Electricity market &
TSO

Wind Power forecast

Market Prices forecast PMS
Real-time

power

Set-points

Market prices &
cleared volume

Day-Ahead 
energy plan

Figure 1. EMS for Spot Market workflow. Adapted from Zhu et al. (2022)

The EMS itself is formulated as a Mixed Integer Linear Programming (MILP) model, executed once daily, at the beginning140

of each day. It aims at maximizing the revenues throughout the time span of the inputs. The PMS takes the form of a Mixed

Integer Quadratic Programming (MIQP) model, executed at regular dispatch intervals. The PMS minimizes the difference

between the power bidding on the SM and the real-time available power. The details of both models can be found in the

referenced work.

The optimization models were solved using the solver of IBM Decision Optimisation Studio CPLEX through the docplex145

python library (IBM, 2023) operating on the DTU’s high-performance computing cluster Sophia Technical University of Den-

mark (2019).

It was observed that for a given HPP configuration, 47 minutes were required to compute the outputs for one year of op-

eration. The underlying reason for this is due to the iterative and sequential nature of the framework. For each day, the MILP

optimization is solved first followed by the MIQP for each dispatch interval (e.g. 96 times a day). While each iteration of the150

MILP and MIQP problems requires a minimal amount of time (less than 0.15 seconds), the frequency of these optimizations

is substantial. Moreover, since each time step depends on the previous one, it is necessary to perform the optimization sequen-

tially. Table 3 shows the number of decision variables and constraints required to optimize for inputs spanning over one year.

This highlights the substantial computational time that would be required to optimize the sizing of a HPP based on such an

operational model.155

While the combination of both models allows for a realistic representation of the operation of a HPP, it has its own limita-

tions. These limitations are also carried over to the surrogate that is build upon both models. No battery degradation model is

considered in the optimization process. It is well known that lithium-ion batteries’ energy capacity degrade over time in a non-

linear fashion (Xu et al. (2018)), this directly impacts revenues as opportunities for energy arbitrage are reduced. Additionally,

as we are focusing on demonstrating the potential of surrogate modeling for EMS of HPP, perfect forecast data will be used.160
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Table 3. Annual Computational Complexity of EMS and PMS

Model Design variables Constraints

EMS 289,445 350,765

PMS 315,360 420,480

Finally, the balancing market will not be considered in this article and will be left as a future works. The combined models,

EMS and PMS, are referred to as a high-fidelity EMS model in this paper.

2.2 Surrogate Methodology

In this article, a surrogate model consists of several sub-components: data pre-processing, a regressor, and data post-processing.

The pre-processing consists of scaling that ensures all inputs contribute equally to the model’s predictions and helps the165

surrogate’s convergence algorithm. The post-processing is applied in accordance with the pre-processing to interpret the results

in their original scale. The regressor is the model tasked with approximating the high-fidelity EMS. Section 2.2.1 details the

inputs and outputs for training and evaluating the surrogate models. Section 2.2.2 describes four surrogate models, differing

in their data processing and regressor model. Sections 2.2.3 and 2.2.4 cover the training and validation of these models,

respectively.170

2.2.1 Surrogate Model’s Inputs and Outputs

Regardless of the surrogate model being evaluated, all models aim to approximate the same output time series given the same

input data. Table 4 below lists the various input and output time series used to train and validate the surrogate.

Table 4. Input and output time series of surrogate models

Variable Time step Time horizon

Input
SM price forecast: SMt

15 min 1 day
Wind power forecast: Wt

Output

HPP power output: P sm
t

1 hour 1 day
Battery discharging power: P sm,dis

t

Battery charging power: P sm,cha
t

HPP curtailed power: P sm,curt
t
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The input time series of the surrogate match those of the EMS, and its outputs align with the PMS’s outputs. In addition

to the input time series, the regressor also considers three scalar parameters representing an HPP, which helps differentiate175

between various HPP configurations. They are represented by equations 1 to 3:

PW /PG (1)

BP /PG (2)

BE/BP (3)

Where PW is the rated power of the wind power plant, PG is the grid connection capacity, BP is the rated battery power, and180

BE is the rated energy capacity of the battery.

2.2.2 Surrogate Models

Table 5 presents all surrogate models evaluated.

Table 5. Surrogate models tested

Pre-processing Regressor Post-processing

Normalization Linear Reverse Normalization

Normalization
Linear

Reverse SVD

SVD Reverse Normalization

Normalization FNN Reverse Normalization

Normalization
FFN

Reverse SVD

SVD Reverse Normalization

The first surrogate, which serves as our benchmark, normalizes the input and output time series for each HPP configura-

tion and employs a multivariate linear regression to predict the normalized outputs from normalized inputs. Details on the185

normalization process appear later on, in this section.

The second surrogate incorporates a dimensionality reduction method known as Singular Value Decomposition (SVD), as

developed by Gene H. Golub (1996). After normalizing inputs and outputs, we apply SVD, a common tool in numerical

analysis, particularly for dimensionality reduction. The specific use of this method is detailed in this section.

The third and fourth surrogate models are similar to the first and second ones, but they differ in their choice of regressors.190

Instead of employing a multivariate linear model, these models utilize a tuned FNN to capture the non-linear relationships

between inputs and outputs. For all surrogate models, we apply data post-processing consistent with the pre-processing to

ensure the output data is interpretable in its original scale.
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For all surrogate models, we normalize the wind power generation time series (Wt) using the turbine’s rated power, and the

spot market price time series (SMt) by the maximum price, achieving a scaling between zero and one. Since the output time195

series magnitudes depend on the sizing inputs, we use these parameters as the basis for normalization. This step refers to the

Normalization in Table 5. It is applied for each time series following these equations:

P sm
t,norm = P sm

t /PG (4)

P sm,dis
t,norm = P sm,dis

t /BP (5)

P sm,cha
t,norm = P sm,cha

t /BP (6)200

P sm,curt
t,norm = P sm,curt

t /(PW −PG) (7)

In Equation (4) the power bidding on the SM is normalized by the grid capacity. Equations (5) and (6) normalized the battery

charge and discharge profiles by the battery’s rated capacity, and Equation (7) normalized the curtailed power with respect to

the difference between wind power and grid capacity. A surrogate model, using only normalization for data processing, has five

input features: SMt, Wt, PW /PG, BP /PG, and BE/BP . It outputs four features: P sm
t , P sm,dis

t , P sm,cha
t , and P sm,curt

t .205

We apply SVD method, as described in Zhu et al. (2010), to derive the principal component matrices, denoted as Z in the

cited paper. This method is used independently for the matrices containing the input time series Min and the output time series

Mout. The SVD is used following the normalization described above and it is applied for the 2nd and 4th surrogate models of

Table 5. Figure 2 illustrates the matrix Min, which includes all input time series for a single HPP configuration.

One HPP configuration = 365 Days

Tim
e steps in

one day

Figure 2. Matrix M containing input time series, denoted Min

In this figure, the notation WHPPn

t,norm,d refers to the normalized wind power time series for day d and for the HPP configuration210

n. Similarly, SMHPPn

t,norm,d refers to the normalized SM prices for day d for the HPP configuration n. As the high-fidelity EMS

uses hourly time steps for forecasted wind power and SM prices, each of the input vector, SMHPPn

t,norm,d and WHPPn

t,norm,d, is of

shape (24,1). Hence, for a given HPP configuration, matrix Min from Figure 2 is of shape (24 · 2,365). To expand this matrix

for all HPP configurations, we concatenate horizontally (i.e, along the second dimension) each matrix Min corresponding to a

HPP configuration. We thus obtain a matrix of shape ((24 · 2) ·N,365). Where N is the number of HPP configurations.215
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The output time series matrix Mout, is constructed in a similar fashion. However, unlike Min, this matrix contains fours

time series, the ones defined in equation (4) to (7). Additionally, these time series have a time step equal to the dispatch interval

e.g., 15 min. Thus, Mout will be of shape ((96 · 4) ·N,365).

After applying Singular Value Decomposition (SVD) to both matrices, Min and Mout , we extract their principal component

matrices, Zin and Zout, and truncate them to the desired level. As a result, we obtain two sets of matrices with different220

truncation levels, denoted as rin and rout respectively. We use these truncated matrices for training and evaluating the regressor

models.

Table 6 presents an overview of the features and samples of each data-processing method for input and output data spanning

over a year.

Table 6. Features and Samples of Data-processing methods

Data processing Normalization SVD

Inputs
Features 5 rin +3

Samples (24 · 2) · 365 · N 365 · N

Outputs
Features 4 rout

Samples (96 · 4) · 365 · N 365 · N

From this table, we observe that the features of the SVD method are most likely higher than than the one derived from225

the normalization method (this depends on the truncation level). However, the number of samples are substantially lower, this

allows us to achieve a reduced representation of the data.

2.2.3 Surrogate Training

To train a surrogate model, a training dataset is defined based on a number of HPP configurations with distinct sizing param-

eters. The details of this dataset can be found in Section 4. More specifically, this training dataset is used to train the SVD230

transformation and the two regressor models. Note that the normalization does not require a training. Two models are used

to approximate the outputs of the high-fidelity EMS: a tuned FNN and a multivariate linear regression. The latter is used as a

baseline model to compare the accuracy of the neural networks.

The training of FNN with hidden layers is done in two steps. Initially, a tuning process is carried out using two hyperparam-

eters shown in Table 7 below. Afterwards, the best-performing model from the tuning process is selected for a more exhaustive235

training.

Within this tuning process, it’s important to note that each layer can have a varying number of neurons within the provided

range. A Rectified Linear Unit (ReLu) activation function has been used for all hidden layers and, for the output layer, a

linear activation function has been used. ReLu is an appropriate activation function for the data, particularly following the

normalization process, as all input and output time series become non-negative.240
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Table 7. FNN grid search hyperparameter space

Hyperparameter Range Step

Layers [3,9] 1

Neurons per layer [40,80] 20

To efficiently select the hyperparameters among the search space, Hyperband by Li et al. (2018), is used. Hyperband uses

random sampling of hyperparameters to explore a wide range of settings.

A NN is defined by its architecture, parameters, and hyperparameters. The architecture consists of layers, starting with the

input layer whose neuron count is determined by the dimensionality of the input data. This layer is followed by several hidden

layers with a given number of neurons and activation functions. These layers and neurons defines the network’s depth and245

width, while the activation functions can introduce non-linearity into the model. The output layer has as many neurons as the

variables in the output data. The interconnections between these layers defines the topology of the NN. The parameters of the

NN are the learnable weights and biases, which are determined in the training process. In contrast, the hyperparameters are

pre-defined settings that are not learned from the training data. These encompasses the number of hidden layers, neurons per

layer and much more. To train a NN, at least 2 settings need to be defined. First, a loss function, which is a metric that measure250

the error between the training data and the model’s prediction - the mean squared error was used. Second, an optimizer, which

modifies the model’s weights and biases during the training process to minimize the loss function. Each optimizer has its own

set of hyperparameters. The Adam optimizer by Kingma and Ba (2017) was used with a learning rate of 10−4

The tuning process aims to evaluate several thousands of NN architectures. To avoid a computationally expensive process,

these NN aren’t trained until they converge. Instead, the best-performing model, from the tuning process, is selected for further255

training.

The tuning resulted in the architectures presented in Table A1 and A2 in A

The multi-variate linear regression is trained using the same dataset with the objective of minimizing the mean squared error

using the same optimizer as for the FNN.

Similarly, the SVD transformations were trained on the training dataset. The transformations were trained separately for260

both input and output time series, resulting in two distinct transformations. The normalization requires no training.

2.2.4 Surrogate Validation

We aim to identify the surrogate model offering the best compromise between training time, inference time, and accuracy.

First, we assess each surrogate’s accuracy on a validation dataset, which is separate from but defined similarly to the training

dataset. We measure the accuracy of each surrogate using the Root Mean Square Error (RMSE) between the predicted and265
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actual values for the normalized hourly time series. The RMSE is computed as follows:

RMSE =

√√√√ 1
N

N∑

i=1

(yi − ŷi)2 (8)

Where:

yi is the true data, within the validation dataset

ŷi is the predicted data, based on validation dataset inputs270

N is the number of data points

Since this RMSE takes into account all the output time series, it provides a holistic measure of the model’s accuracy. We use

this metric to compare the performance of the surrogate models presented in Table 5. Additionally, we measure the training an

inference time of each model.

For the best-performing surrogate model, we further investigate the accuracy of each output time series using RMSE for275

a deeper understanding of the model. Our focus then shifts to one specific output time series, the normalized power output

P sm
t,norm. This time series allows us to calculate the yearly revenues, which are required to compute the Profitability Index (PI),

the key application of our surrogate in this article.

To explore the methodology’s potential further, we assess the surrogate’s generalizability across various locations within the

western Danish price region, DK1. For this intra-generalizability analysis, we calculate the Normalized RMSE (NRMSE) of280

yearly revenues, defined as follows:

NRMSE =

√
1
K

∑K
k=1(Πk − Π̂k)2

Median(Π)
(9)

Where:

K is the number of HPP configurations.

in the validation dataset.285

Πk is the revenue of the kth HPP configuration,

based on true data.

Π̂k is the revenue of the kth HPP configuration,

based on predicted data.

Median(Π) is the median revenue of all HPP290

configurations, based on true data.
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The revenues time series is extracted from either true/observed data (from the high-fidelity model) or predicted (from the

surrogate model) power time series as follows:

Π =
T∑

i=t

P sm
t ·λsp

t ·∆t (10)

Where Π is the yearly revenue, ∆t the time step, and T the total time steps within a year.295

3 Application: PI Evaluation

To assess the business case of a HPP, we can use financial metrics like Internal Rate of Return (IRR) and Net Present Value

(NPV). IRR calculates the HPP’s annual investment return, while NPV assesses its profitability in today’s value. However,

when an HPP isn’t profitable, resulting in a negative NPV, the IRR becomes undetermined. A more meaningful measure is

the Profitability Index (PI), calculated as NPV divided by the initial investment (CAPEX). The PI indicates how many dollars300

of present value benefit are generated per dollar of investment, offering a more intuitive understanding of the investment’s

profitability. This metric allows for a direct comparison of the relative profitability of each project, regardless of their absolute

size. Additionally, when resources are limited, NPV/CAPEX can aid in prioritizing projects. Projects with higher PIs can be

prioritized as they promise greater returns per unit of investment. A PI greater than 1 signifies that the NPV of future cash flows

exceeds the initial investment.305

To compute the PI, we require the NPV which in turn requires accurate yearly revenues and costs over the HPP’s lifetime,

aligning with the ideal framework shown in Figure 3a. Yet, as discussed in the Introduction and Section 2.1, this method is

computationally demanding. We instead use an alternative framework in Figure 3b, utilizing the developed surrogate. This

surrogate replaces the high-fidelity EMS, significantly reducing computational time and making the framework’s execution

feasible. The accuracy of this framework, employing the surrogate model to evaluate the PI, is presented in Section 5.4.310

Sizing Inputs

High-Fidelity EMS

Operational Outputs

PI EvaluationOperational Inputs

Sizing Inputs Operational Outputs

PI EvaluationOperational Inputs

Surrogate

Pre-processing

Regressor

Post-processing

(a) Ideal sizing evaluation framework using the
High-Fidelity EMS (b) Developed sizing evaluation framework using a surrogate of the EMS

Figure 3. High-level sizing framework

The PI is calculated as follows:

PI =
NPV (x)

CAPEX(x)
(11)
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Where:

x = [PG,PW ,BE ,BP ]

The financial model is based on the yearly cashflow (CFy) and the discount rate after tax (rAT ) as defined below:315

NPV =
Y∑

y

CFy

(1 + rAT )y

Where Y is the lifetime of the power plant. The cashflow is calculated based on yearly profits (Profity) and CAPEX .

CFy =





Profity for y > 0

−CAPEX for y = 0

It is important to highlight that the yearly profits are based on the revenues from the surrogate or the high-fidelity EMS (Πy),

as well as, the Operational Expenditure (OPEXy), the tax rate (τtax), and the rAT .320

Profity = (Πy −OPEXy) · (1− τtax)

The cost model used to calculated the CAPEX and OPEX is define below:

CAPEX =Cw + Cb + Cel

OPEXy =Ow,y + Ob,y + Oel,y

Cw =(WTcost + WTcivil) ·PW325

Cb =Nbeq ·BE
cost ·BE + (BP

cost + BP
civil + BP

control) ·BP

Cel =(HPPBOS + PG
cost) ·PG + Landrent

Ow,y =WTOM
fixed,y ·PW + mean(AEP ) ·WTOM

variable,y

Ob,y =BE,OM
y ·BE

Oel,y =0330

Where Cw, Cb, Cel are the CAPEX of the wind power plant, batteries and the balance of system. Similarly Ow,y , Ob,y , and

Oel,y are the yearly OPEX from the wind power plant, batteries, and balance of system. The WTcost and WTcivil are the wind

turbine’s cost and civil works in Euro/MW . Nbeq is the number of battery equivalent in today’s value. We will elaborate on

this metric shortly. BE
cost is the battery energy cost per MWh while BP

cost, BP
civil, BP

control are the battery power cost, civil

costs and control system costs per MW. HPPBOS and PG
cost are the shared Balance Of System (BOS) cost and grid connection335

cost of the HPP. WTOM
fixed,y and WTOM

variable,y are the fixed and variable Operation and Maintenance (O&M) costs of the wind

turbine per year and per MW. mean(AEP ) is the mean Annual Energy Production (AEP) of the wind power plant. BE,OM
y is

the yearly O&M cost of the battery per MWh. In this study, we set a fixed lifetime for the battery (ib) as battery degradation

is not considered. Additionally, to address the decreasing costs of batteries over time, we employ the concept of equivalent
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number of present batteries (Nbeq). This method incorporates the annual battery price reduction rate (fb) and the designated340

replacement year for each battery (yb(ib)).

Nbeq =
Nb−1∑

ib=0

(1− fb)yb(ib)

It should be noted that the calculation of NPV/CAPEX requires only the HPP power output time series from either the high

fidelity model or the surrogate.

4 Case Study345

In Section 4.1, we will introduce the training and validation dataset. Following this, Section 4.2 will discuss the data related

to the intra-generalizability analysis. Lastly, Section 4.3 will provide a detailed overview of the cost model data specific to our

application.

4.1 Training and Validation Dataset

4.1.1 HPP configurations350

As we rely on a surrogate to replace the high-fidelity EMS, we require a comprehensive dataset to train and validate this

surrogate. Therefore, a wide range of HPP configurations should be covered. In addition, these configurations need to be

realistic and in line with industry practices. Table 8 summarize the parameter ranges.

Table 8. Sizing Parameters and Ranges

Sizing Parameter Range

P W /P G [-] [1, 2]

BP /P G [-] [0, 1]

BE/BP [h] [1, 8]

Where BP is the rated battery power, PG is the grid connection, PW is the rated power of the wind power plant, and BE is

the energy capacity of the battery. For this article, the grid connection varies between 50 MW and 700 MW.355

To ensure an equal distribution of all variables across the entire parameter space, the Latin Hypercube Sampling (LHS)

method, by Jin et al. (2005), was used to randomly select 250 sizing configurations. Of which 200 HPP (80%) are used to train

the regressor and 50 HPP (20%) are used to evaluate the accuracy of the surrogate as detailed in Section 2.2.2. Subsequently,

the high-fidelity EMS was solved using these configurations with the input time series presented in the section below.
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4.1.2 Input time series & WT technology360

The input time series required for the high-fidelity model, mentioned in Table 2, are generated using two tools. Wind power time

series are simulated with the CorRES simulation tool Murcia Leon et al. (2021); Koivisto et al. (2019). This tool is based on

re-analyzes meteorological data from the Weather Research and Forecasting model. CorRES’ stochastic model, Koivisto et al.

(2020b), was integrated to add fluctuations resulting in wind power time series with 15 minute-level resolution. The simulation

was based on meteorological data from the year 2012, with the assumption that the climate in 2030 remains unchanged from365

2012. CorRES requires specific inputs are required, including the HPP’s longitude, latitude, hub height of the wind turbine,

power curve, and the simulation period. The considered turbine is the Gamesa G80 with a rated power of 2MW and a hub

height of 100 meters.

SM price time series for the 2030 electricity markets are obtained from the Balancing Tool Chain (BTC) Kanellas et al.

(2020). BTC is built upon Balmorel, an open-source energy system modelWiese et al. (2018) that simulates electricity market370

operations, ranging from day-ahead to real-time dynamics for the northern central European region. Additionally, an investment

optimization is implemented to simulate a 2030 energy system scenario Koivisto et al. (2020a). The wind generation and price

time series are presented in the figure below:

Figure 4. Input time series for each HPP configuration

4.1.3 Output time series

For all 250 HPP configurations, and the above mentioned input time series, the high-fidelity model is used to generate all output375

time series described in the Table 4. The 200 HPP configurations, the input time series, and the output time series are used train

all surrogate models.
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4.2 Intra-generalizability analysis Data

For the intra-generalizability analysis, we use the best surrogate model following the methodology described in Sections 2.2.

We then test the surrogate’s accuracy across four randomly chosen locations within the same market region, labeled A to D. At380

each location, we randomly select 10 HPP configurations from the training dataset and another 10 from the validation dataset.

The coordinates of each location are listed in Table B1. Figure 5a displays these locations, indicating the training location with

an "X" and the evaluation sites for the HPPs.

As all locations are in the same market region, the SM price time series is the same for all locations. The weather data for

locations A-D were provided by CorRES and the output time series per location and per HPP configuration were generated385

using the high-fidelity EMS model. This data is used to compare the performance of the surrogate trained on location X and

evaluated on locations A-D.

The wind generation distribution across all locations are available in Figure 5b. From this figure, it is observed that location

C presents a different distribution than the other locations, notably with a lower average wind power. Meanwhile, locations A,

B, and D share similar distributions.

(a) Location of trained surrogate
 (X, in red) and evaluated model (A-D)

(b) Normalized wind power distribution across all locations. A log scale was used
to highlight the differences between locations.

Figure 5. Intra-generalizability data

390

4.3 Cost model Data

Table 9 presents a summary of the cost assumptions used in this article.

As the battery’s lifetime is of 7 years, each HPP will require 3 batteries during its lifetime. Given a battery price reduction

of 10% per year, we obtain a number of battery equivalent (Nbeq) of 1.84.

17

https://doi.org/10.5194/wes-2024-96
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 9. Cost assumptions

Variable Value

rAT 6%

τtax 22%

WTcost [EUR/MW] 457,143

WTcivil [EUR/MW] 185,714

WT OM
fixed,y [EUR/MW/year] 9,000

WT OM
variable,y [EUR/MWh/year] 0.964

BE
cost [EUR/MWh] 90,000

BP
cost [EUR/MW] 32,000

BP
civil [EUR/MW] 36,000

BP
control [EUR/MW] 9,000

BE,OM
y [EUR/MWh/year] 0

f_b 10%

i_b, lifetime of battery [years] 7

Y , lifetime of HPP 25

HPPBOS [EUR/MW] 119,940

P G
cost [EUR/MW] 50,000

5 Surrogate Results395

This Section details the accuracy of the surrogate models and their main application in evaluating the Profitability Index (PI)

of Hybrid Power Plants (HPPs). We start by comparing the accuracy of each surrogate model in Section 5.1, followed by

examining how the accuracy of the best surrogate model changes with different training dataset sizes in Section 5.2. Next, in

Section 5.3, we assess the surrogate’s performance across various locations where it hasn’t been trained. Finally, Section 5.4

compares the PI accuracy when evaluated using both the surrogate and the high-fidelity EMS. For all the results shown in this400

section, the validation dataset was used to evaluate the accuracy of the surrogate model and the application.

5.1 Surrogate’s Accuracy for Hourly Operation

The accuracy of the four models, presented in Table 5, can be found in Figure 6. The RMSE of all hourly output time series

is used to compare the accuracy of all models. This RMSE provides a holistic measure of the model’s accuracy. Moreover, the

training and inference time were reported in Table 10.405

From Figure 6, it is observed that the tuned NN outperforms the linear counterpart in terms of accuracy. This result is

expected as the linear model cannot capture the inherent non-linearities of the high-fidelity model. Among the linear models,
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using the SVD in addition to the normalization slightly outperforms the linear model using only the normalization. However,

for tuned NNs, the opposite is true. Given the broad distribution of HPP configurations, the SVD effectively captures key

trends, improving the accuracy of the linear model. Yet, when tuning comes into play, the NN can make better use of all the410

data (in the absence of SVD) rather than a reduced representation of it (when using the SVD) which explains the difference

between both tuned FNNs.

Linear NN_Tune
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Figure 6. Validation RMSE by Data Processing Method: "Linear" for multivariate linear regression, "NN_tune" for tuned FNN (parameters

in Table 7), "Norm" for Normalization only, and "SVD" for combined Normalization and SVD methods.

Table 10 contrasts the time required to execute the workflow for each surrogate model. The pre-processing time considers

both training and validation datasets. However, the training time accounts only for the training dataset, while the inference time

reflect the inference on a single HPP configuration spanning one year of data.415

There is a substantial difference between surrogates using the normalization only and the surrogates using the SVD in

addition to the normalization. This difference is even more exacerbated when looking at NN_Tuned: when using SVD the NN

converges in 5 hours while it takes 7 days for the surrogate employing only a normalization. This is mainly due to the difference

in training data as highlighted in Table 6.

From both presented figure and table, we conclude that the tuned FNN using the SVD provides the best compromises420

between accuracy, training time and execution time. To gain deeper insights into this surrogate’s performance we investigated

its capability to predict each hourly output time series individually, for all validation data. Figure 7 provides such an overview.

19

https://doi.org/10.5194/wes-2024-96
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 10. Time Metrics of Surrogate Models

Method Model Pre-proc. Train Time Inf. Time

SVD Linear 7m 14m 0.02s

SVD NN_Tuned 7m 5h 0.04s

Normalization Linear 1.1m 14.4h 0.64s

Normalization NN_Tuned 1.1m 7d 1.02s

From this figure we observed that the power output of the HPP and the curtailed power are well predicted, however the battery

charge and discharge profiles are harder to predict. To further understand these discrepancies, we examine the predicted output

time series for a given day, from the surrogate as well as the observed output time series from the high fidelity model.425

Figure 7. RMSE for each surrogate’s output time series across all validation HPP configurations. P_HPP_SM is the power bidding on the

SM. P_cha_RT and P_dis_RT are the charging and discharging power of the battery. RES_RT_cur is the curtailed power.

Figure 8 shows the difference between the the surrogate’s prediction and the ideal behavior, from the high-fidelity model.

The surrogate captures well the daily trend across all time series. While it accurately predicts the intra-day fluctuations

for power bidding, it is less precise when predicting battery charge and discharge power. This is due to the abrupt power

fluctuations, in the high-fidelity model, that can be seen in Figure 8b and 8c. Additionally, as shown in Figure 8d, the surrogate

occasionally struggles to forecast consistent zero values over an entire day—a challenge characteristic of FNNs. Nonetheless,430
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(a) Power Output of the HPP (b) Battery Charge Profile

(c) Battery Discharge Profile (d) Curtailed Power

Figure 8. Output time series for a given day, from the high-fidelity model (blue) and the surrogate (red). All time series are in MegaWatt.

these discrepancies are minor, with predicted curtailed power fluctuating within a ±1.5 MW range instead of the expected

steady 0 MW. Such variances are negligible relative to the HPP’s export capacity, which can reach up to 700 MW.

The application presented in Section 3, requires only the HPP power output out of all the predicted output time series. That

is why we want to further examine this output time series. Figure 9a presents a hexbin plot that compares hourly predicted,

and normalized, HPP power outputs across all HPP configurations in the validation dataset. The hexagonal bins group nearby435

points and show the density of data points within each bin. The value of the density is shown on the color bar, the darker

the color, the denser the hexagon. A log scale is used for clarity. A one-to-one line, representing an ideal prediction, is also

depicted for comparison. The power bidding on the SM aligns closely with the observed values.

The PDF of errors, for the same data, is shown in Figure 9b. The histogram (in blue) shows the frequency distribution of

these errors, while the red line represents a Gaussian (normal) distribution fitted to the data. The parameters of the Gaussian440
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fit—mean (µ) and standard deviation (σ)—are shown in the legend and are both approximately 0.00 and 0.07, respectively.

The RMSE is also 0.07, indicating the typical magnitude of prediction errors.

The mean (µ) being close to zero suggests that the surrogate’s predictions are unbiased on average. The Gaussian fit’s close

alignment with the histogram suggests that the errors are distributed in a manner consistent with a normal distribution, which

often implies that the surrogate model’s residuals are well-behaved in a statistical sense.445

Figure 9. Accuracy and error distribution of hourly normalized Power Output

5.2 Surrogate Convergence to Training Dataset

The previous study has demonstrated the capacity of the NN to replicate the daily trends of the high-fidelity NN. However,

the chosen data was based on an arbitrarily high number of HPP configurations. Consequently, we sought to examine how the

NN’s accuracy varies with different dataset sizes. NNs were tuned using the SVD processing, with a training dataset ranging

from 4 to 200 HPP configurations. The validation dataset from the previous study is not modified to provide a fair comparison.450

Results of these simulations are illustrated in Figure 10. Interestingly, the RMSE seems to plateau when reaching a training

dataset size of 110 HPP configurations. We also note that there is a marginal gain in accuracy between 50 and 100+ HPP

configurations. This is relevant to highlight as it suggests potential reductions in the generated data by the high-fidelity EMS,

and, therefore shorter training duration for the surrogate. As a reminder, each HPP configuration, which spans over one year of
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data, requires 47 minutes to generate outputs using the high-fidelity EMS. It is also interesting to compare the Normalized Root455

Mean Square Error (NRMSE) of yearly revenues, computed as per equation 9. The model trained with 200 HPP configurations

has an NRMSE of 0.81% while the the model trained with 32 HPP configurations has an NRMSE of 1.0% across the entire

validation dataset. Here again, the difference between both outcomes is marginal.
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Figure 10. Evolution of accuracy with increasing training dataset size. A fixed validation dataset, of 50 configurations, is used across all

simulations.

5.3 Intra-generalizability Accuracy

In the section we evaluate the surrogate’s accuracy on four different locations (A to D). The selected surrogate is the tuned460

FNN using the SVD whose results were detailed in Section 5.1. As a reminder, this surrogate is trained using weather data

from location X and with a training dataset of 200 HPP configurations. We use the NRMSE of yearly revenues to measure

the accuracy of the surrogate. This was done on 10 randomly selected HPP configurations from the training dataset and 10

others from the validation dataset. All accuracy results are compared to the baseline e.g., using location X. The accuracy of the

surrogate is illustrated in Figure 11.465

The surrogate model’s NRMSE for predicting revenue demonstrates a marginal difference between training and validation

datasets. Specifically, the NRMSE for the training dataset (location X) is 0.79%, compared to 0.81% for the validation dataset.

When looking at location A to D, the average NRMSE for the training dataset samples is 0.79% (aligning with the Train

Baseline), whereas it is 1.3% for validation dataset samples. Notably, location D shows the greatest discrepancy in NRMSE

between training and validation samples. This variation may be attributed to the combination of HPP configurations and470
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distinct weather time series at location D, detailed in Figure 5b. Overeall, despite location X’s distribution with two distinct

peaks (around 0.08 and 0.1) that aren’t observed in other locations, the surrogate’s performance remains consistent across all

locations.
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Figure 11. Performance of surrogate’s generalizability for different locations and for HPP configurations from different datasets. The Base-

line refers to location X, where the surrogate has been trained. Train Baseline and Val Baseline correspond to the NRMSE of Revenues from

the training dataset of location X (200 HPP configurations) and from the validation dataset (50 HPP configurations). Val refers to 10 HPP

configurations randomly selected from the validation dataset while Train refers to 10 random HPP configurations from the training dataset.

Both Val and Train are evaluated on location A-D.

5.4 PI Evaluation Accuracy

In this section, we evaluate the PI of several HPPs using the surrogate and the high-fidelity EMS model. Both frameworks475

are described in Figure 3. In order to evaluate the accuracy of the PI computed with the surrogate we use the same 50 HPP

configurations, from the validation dataset, for both frameworks. The selected surrogate is the tuned FNN using the SVD

described in Section 5.1. Figure 12 shows the PI calculated using the high-fidelity EMS on the y-axis and the PI inferred using

the surrogate on the x-axis for the corresponding HPP configuration.
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Figure 12. PI comparison based on surrogate inference and high-fidelity EMS evaluation for the validation dataset.

The RMSE of PI across the validation dataset is of 0.010, which indicates the average magnitude of the errors between the480

surrogate predictions and the high-fidelity EMS evaluations. The scatter plot shows that most of the points are close to the line

of perfect prediction (red line), with some scatter around it. Most of the points are below the perfect line indicating that the

surrogate is slightly overestimating the profitability of the HPP. However this tendency is reversed for higher NPV/CAPEX,

the surrogate provides conservative estimate of the PI. Overall, the tight clustering of points around the red line suggests that

the surrogate model is quite reliable for predicting the PI when compared to the high-fidelity EMS.485

6 Discussion

This study aims to evaluate the potential of applying surrogate modeling in order to emulate the behavior of a complex EMS

for a HPP with bidding on the spot market. Our investigation highlights the importance of both pre- and post-processing of data

with an appropriate choice of the surrogate model. Among the options explored, the tuned FNN that utilizes SVD emerged

as the optimal balance. Indeed, Figure 6 shows that the tuned NN using only a normalization is the most accurate, while490

adding an SVD results in a similar performance. Yet, when we look at the computational time, as shown in Table 10, using the

SVD significantly reduces the training duration. This difference is even more pronounced when the tuning time is considered: it

requires five days to tune the NN using a normalization, whereas it takes only 4.3 hours when an SVD is used. This discrepancy

is assigned to the inherent capability of the SVD to extract a reduced order of data that contains meaningful coefficients and

daily temporal trends.495
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However, challenges persist, particularly in predicting battery charge and discharge profiles. As depicted in Figures 7 and

8, this difficulty arises from the high fidelity model’s abrupt power output fluctuations and the intrinsic non-linearity of these

variables. For the purposes of this study, focusing primarily on the power output of the HPP is sufficient, as this is the only

variable required in revenue calculation and subsequent profitability index evaluation. Additionally the power output of the

HPP is well predicted as shown in Figure 9b: there is no bias and the standard deviation is very small. While this result only500

stands for a surrogate trained with 200 HPP configurations it is still reasonable to assume similar behavior for a surrogate

trained with less data points. Indeed, Figure 10 demonstrate a marginal difference in accuracy between a surrogate trained with

200 HPP configurations and 50 HPP configurations. Ultimately it is a trade off between training time and accuracy. In terms

of intra-regional generalizability, the accuracy across different locations is more consistent than between dataset types. This

uniformity in accuracy, within each dataset type, can be partly attributed to the region’s relatively homogeneous wind profiles,505

facilitated by its largely flat terrain. A loss in accuracy is observed when unseen HPP configurations are used (e.g. validation

dataset). Nonetheless, these results demonstrate the surrogate’s ability in capturing essential data trends (Figure 11). However,

it is important to note that this study’s scope was confined to the DK1 market region, characterized by uniform wind profiles

due to its flat terrain (Figure 5b). The fast and accurate surrogate allows us to evaluate a HPP’s profitability throughout its

lifetime with little computational burden. Indeed, the surrogate model is capable of evaluating the NPV/CAPEX for all 50 HPP510

configurations of Figure 12 in a mere 25 seconds. In contrast, computing the same evaluations using the high-fidelity model

for each HPP configuration, with inputs spanning over a year, would take approximately 39 hours. However, it is important to

understand the impact of the surrogate’s accuracy on the the PI. Figure 12 shows that the surrogate can be reliably used if slight

deviation of the order of magnitude of 0.010 PI are acceptable for the intended business evaluation. In other words, the error

on the predicted NPV is around 1% of the CAPEX. It is also relevant to note that all HPP configurations are not profitable,515

resulting in negative PI and further supporting the use of NPV/CAPEX as an evaluation metric. Hence the importance of

optimization in the context of sizing of HPP which is enabled with the developed framework. However, a detailed exploration

of the sizing optimizer is beyond the scope of this manuscript and will be the subject of future investigations. It is important

to emphasize that these findings are site-specific and heavily dependent on the cost model employed, hence they should not be

generalized across different HPP sites.520

There are certain limitations and future works worth acknowledging. For one, The full capabilities of the high-fidelity model

has not been leveraged. While the EMS can consider a realisation of the forecast error in both weather and market data, our

initial approach prioritized a methodology using perfect forecast data. Nonetheless, this a natural next step where a sizing

framework can be developed based on a surrogate that can handle the inherent uncertainties in weather and market forecast

errors.525

While our research was mainly focused on the spot market, currently the major source of revenues for power plants, the

market dynamics might shift. As the share of intermittent power plant increases in the grid system that is becoming more

decentralized, the balancing market is forecasted to become a considerable revenue stream. Thus, there is a pressing need for

a more comprehensive surrogate considering operational strategies in both spot and balancing markets.

Moreover, a FFN has it’s own limitation when it comes to time series representation, as seen in the battery charge and discharge530
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profiles on Figure 8. This highlights the importance of further exploring the machine learning field. A promising avenue would

be models that blend physical constraints, such as physics-informed neural networks.

7 Conclusion

In this paper we have introduced a new methodology to accurately and efficiently approximate a state of the art EMS for

HPP involved in spot market power bidding. This model leverages singular value decomposition to extract temporal trends in535

the input, and utilizes FNN, to represent the non-linear dynamics of the EMS. This method has demonstrated over twice the

accuracy of traditional multivariate linear regression models. A key innovation of our study is the synergistic use of SVD and

FFN, a combination that represents a first in this field. This approach successfully replicates the annual revenues of an HPP

with an NRMSE of 0.81% for the best model. To fully demonstrate the capabilities of our surrogate model, we have integrated

it into a sizing evaluation framework designed to calculate the Profitability Index (NPV/CAPEX) based on the technology mix540

rating within the HPP. This framework not only enabled substantial computational savings—reducing processing time from 39

hours to a mere 25 seconds compared to a high-fidelity model—but also maintained remarkable accuracy with an RMSE of

0.010. Though our methodology may seem straightforward, it is nonetheless powerful and opens up new possibilities in the

field of HPP sizing optimization.

Data availability. The weather and spot market price time series data are available on request from the corresponding author.545
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Appendix A: FNN architecture

Tables with tuned FNN architecture.

Table A1. Architecture of tuned NN using SVD

Layers Neurons

Input Layer 17

Hidden Layer 1 80

Hidden Layer 2 60

Hidden Layer 3 80

Hidden Layer 4 80

Hidden Layer 5 80

Hidden Layer 6 80

Hidden Layer 7 60

Hidden Layer 8 80

Hidden Layer 9 80

Output Layer 125

Table A2. Place holder: Architecture of tuned NN using a normalization

Layers Neurons

Input Layer 5

Hidden Layer 1 80

Hidden Layer 2 80

Hidden Layer 3 80

Hidden Layer 4 80

Output Layer 4
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Appendix B: Data supplement

Table with the coordinates of each location used in the intra-generalizability study.

Table B1. Location Coordinates for the Generalizability study. Coordinates are shown in decimal degrees.

Location Latitude Longitude

X 57.0482 8.8876

A 56.383 8.6705

B 55.2908 8.6551

C 57.1852 9.9527

D 55.3088 10.4398
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